A novel intronic cis element, ISE/ISS-3, regulates rat fibroblast growth factor receptor 2 splicing through activation of an upstream exon and repression of a downstream exon containing a noncanonical branch point sequence.

نویسندگان

  • Ruben H Hovhannisyan
  • Russ P Carstens
چکیده

Mutually exclusive splicing of fibroblast growth factor receptor 2 (FGFR2) exons IIIb and IIIc yields two receptor isoforms, FGFR2-IIIb and -IIIc, with distinctly different ligand binding properties. Several RNA cis elements in the intron (intron 8) separating these exons have been described that are required for splicing regulation. Using a heterologous splicing reporter, we have identified a new regulatory element in this intron that confers cell-type-specific inclusion of an unrelated exon that mirrors its ability to promote cell-type-specific inclusion of exon IIIb. This element promoted inclusion of exon IIIb while at the same time silencing exon IIIc inclusion in cells expressing FGFR2-IIIb; hence, we have termed this element ISE/ISS-3 (for "intronic splicing enhancer-intronic splicing silencer 3"). Silencing of exon IIIc splicing by ISE/ISS-3 was shown to require a branch point sequence (BPS) using G as the primary branch nucleotide. Replacing a consensus BPS with A as the primary branch nucleotide resulted in constitutive splicing of exon IIIc. Our results suggest that the branch point sequence constitutes an important component that can contribute to the efficiency of exon definition of alternatively spliced cassette exons. Noncanonical branch points may thus facilitate cell-type-specific silencing of regulated exons by flanking cis elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of sequences and mechanisms through which ISE/ISS-3 regulates FGFR2 splicing

Alternative splicing of fibroblast growth factor receptor-2 (FGFR2) mutually exclusive exons IIIb and IIIc results in highly cell-type-specific expression of functionally distinct receptors, FGFR2-IIIb and FGFR2-IIIc. We previously identified an RNA cis-element, ISE/ISS-3, that enhanced exon IIIb splicing and silenced exon IIIc splicing. Here, we have performed comprehensive mutational analysis...

متن کامل

A stem structure in fibroblast growth factor receptor 2 transcripts mediates cell-type-specific splicing by approximating intronic control elements.

Alternative splicing of fibroblast growth factor receptor 2 (FGFR2) occurs in a cell-type-specific manner with the mutually exclusive use of exon IIIb or exon IIIc. Specific inclusion of exon IIIb is observed in epithelial cells, whereas exon IIIc inclusion is seen in mesenchymal cells. Epithelium-specific activation of exon IIIb and repression of exon IIIc are coordinately regulated by introni...

متن کامل

A Non-sequence-specific double-stranded RNA structural element regulates splicing of two mutually exclusive exons of fibroblast growth factor receptor 2 (FGFR2).

Alternative splicing of fibroblast growth factor receptor 2 (FGFR2) mutually exclusive exons IIIb and IIIc represents a tightly regulated and functionally relevant example of post-transcriptional gene regulation. Rat prostate cancer DT3 and AT3 cell lines demonstrate exclusive selection of either exon IIIb or exon IIIc, respectively, and have been used to characterize regulatory FGFR2 RNA cis-e...

متن کامل

MAZ elements alter transcription elongation and silencing of the fibroblast growth factor receptor 2 exon IIIb.

The fibroblast growth factor receptor 2 (FGFR2) gene exons IIIb and IIIc are alternatively spliced in a mutually exclusive and cell type-specific manner. FGFR2 exon choice depends on both activation and silencing. Exon IIIb silencing requires cis-acting elements upstream and downstream of the exon. To examine the influence of transcription on exon IIIb silencing, the putative RNA polymerase II ...

متن کامل

Multiple interdependent sequence elements control splicing of a fibroblast growth factor receptor 2 alternative exon.

The fibroblast growth factor receptor 2 gene contains a pair of mutually exclusive alternative exons, one of which (K-SAM) is spliced specifically in epithelial cells. We have described previously (F. Del Gatto and R. Breathnach, Mol. Cell. Biol. 15:4825-4834, 1995) some elements controlling K-SAM exon splicing, namely weak exon splice sites, an exon-repressing sequence, and an intron-activatin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 1  شماره 

صفحات  -

تاریخ انتشار 2005